PUBLIC UTILITIES COMMISSION FOR THE MUNICIPALITY OF CHATHAM-KENT TILBURY WATER POLLUTION CONTROL PLANT

2019 PERFORMANCE REPORT

January 1 to December 31, 2019

Certificate of Approval # 6980-6BLJ9R

Plant Description

The Tilbury Wastewater Treatment Plant is located north of Highway 401 in the Town of Lakeshore and treats domestic and industrial wastewater generated by the Town of Tilbury. Wastewater is collected by 8 sanitary pump stations with the Lyon Street Pump Station supplying the facility. This mechanical treatment plant replaced the existing lagoon system. The final effluent is discharged into Tremblay Creek.

The Tilbury Wastewater Treatment Plant upgrade was completed in late December of 2004. The design capacity of the plant is 5,434m³/day with a Peak Flow Rate of 13,700m³/day.

A portion of the lagoon system was turned into a wildlife wetland.

The treatment system includes the following processes:

- Headworks building
- Orbal oxidation ditch
- Two secondary clarifiers
- Tertiary Treatment building
- Ultra Violet Light disinfection

REPORTING REQUIREMENTS UNDER CERTIFICATE OF APPROVAL #6980-6BLJ9R

Summary and Interpretation of Monitoring and Comparison to the Effluent Limits: Condition 10 (6) (a)

Tables 1 & 2 outline the monthly average results for parameters tested compared to the limits outlined in the Certificate of Approval Table 2 Effluent Limits.

Exceedances of the average monthly concentration effluent limit for Ammonia occurred in the months of May, June, and September.

Exceedances of the average daily effluent loading limit for Ammonia occurred in the months of May and June.

An exceedance of the average monthly concentration effluent limit for Total Suspended Solids occurred in the month of May.

An exceedance of the average monthly concentration effluent limit for Total Carbonaceous BOD occurred in the month of May.

Exceedances of the average monthly concentration effluent limit for Total Phosphorus occurred in the months of January, February, March, April, May, June, July, August, September, October, November, and December.

Exceedances of the average daily effluent loading limit for Total Phosphorus occurred in the months of August, September, October, and November.

The PUC has determined that the root cause is intermittent discharges of non-reactive

phosphorus from a local industry and is working closely with the industry to address the issue.

Success and Adequacy of the Works

During the reporting period, the annual average daily flow was 1,717 m³/day, which represents approximately 32% of the rated capacity of $5,434m^3/day$. The maximum daily flow was $8,443 m^3/day$, which is 62% of the Peak Flow Rate of 13,700 m³/day

Table 1: Summary of Monitoring Data and Comparison to Effluent Limits & Objectives – Concentrations as well as rated capacity to the sewage works

W	as nowing		ks that year								
Month	Total Monthly Flow m ³	Avg Daily Flow /Month m ³ /day	Avg Daily Flow/ Year m³/day	% of Plant Capacity	CBOD₅ mg/L	Total S.S. mg/L	Total Ammonia mg/L	Total P mg/L	pH Min	pH Max	E.Coli/100 mL CFU GeoMean
Limits: May 1 – Oct 31	None	None	5,434	100	10	10	2.0	0.50	6.0 -	- 9.5	150
Limits: Nov 1 – Apr 31	None	None	5,434	100	10	10	4.0	0.50	6.0 -		150
Objectives: May 1 – Oct 31	None	None	5,434	100	5	5	1.0	0.30	6.0 -		100
Objectives: Nov 1 – Apr 31	None	None	5,434	100	5	5	2.0	0.30	6.0 -		100
Jan	46,499	1,500			3.6	7	2.65	0.97	7.4	8.4	10
Feb	54,448	1,945			3.3	6	1.38	0.76	7.4	8.4	10
Mar	51,063	1,647			2.3	5	0.54	0.85	7.5	8.2	24
Apr	66,060	2,202			4.4	7	3.04	0.85	7.4	8.1	13
Мау	55,330	1,785			10.5	12	13.63	1.13	6.7	8.3	10
Jun	50,716	1,691			2.5	4	6.88	1.09	6.9	7.9	10
Jul	52,919	1,707			2.0	2	0.57	1.06	6.4	7.5	10
Aug	53,730	1,733			2.0	2	0.44	1.85	6.6	7.5	11
Sept	48,920	1,631			2.4	2	2.25	1.78	6.5	7.8	27
Oct	54,089	1,745			2.5	2	0.33	1.80	6.8	7.6	19
Nov	51,013	1,700			2.0	4	0.24	1.75	6.8	7.9	23
Dec	41,894	1,351			2.0	5	0.18	1.79	6.8	8.1	15
YEAR			1,717	32%							
	Yearly Total Flow m ³					Yearly Ma	aximums				
	626,683	2,202			10.5	12	13.63	1.85	7.5	8.4	27

Plant rated capacity of 5,434m³/day Total sewage flow to the works during a calendar year divided by the number of days during which sewage was flowing to the works that year

Table 2: Summary of Monitoring Data and Comparison to Influent Limits - Loadings

Month	Avg Daily Influent Flow /Month m³/day	CBOD₅ kg/day	Total S.S. kg/day	Total P kg/day	Total Ammonia kg/day
Limits: May 1 – Oct 31	None	54.0	54.0	2.7	10.8
Limits: Nov 1 – Apr 31	None	54.0	54.0	2.7	21.6
Jan	1,500	5.4	11.1	1.5	4.0
Feb	1,945	6.3	11.7	1.5	2.7
Mar	1,647	3.7	8.2	1.4	0.9
Apr	2,202	9.7	15.9	1.9	6.7
Мау	1,785	18.7	21.4	2.0	24.3
Jun	1,691	4.2	7.2	1.8	11.6
Jul	1,707	3.4	2.8	1.8	1.0
Aug	1,733	3.5	3.9	3.2	0.8
Sept	1,631	3.9	3.6	2.9	3.7
Oct	1,745	4.4	3.5	3.1	0.6
Νον	1,700	3.5	6.2	3.0	0.4
Dec	1,351	2.7	7.3	2.4	0.2
				early	
			Max	timums	
		18.7	21.4	3.2	24.3

Operating Problems and Corrective Action: Condition 10 (6) (b)

The Tilbury Water Pollution Control Plant has experienced numerous exceedances during this reporting period. A consultant was brought in to address the operational issues and thus far, there have been improvements in all areas except for phosphorus. The PUC has determined that the root cause is intermittent discharges of non-reactive phosphorus from a local industry and is working closely with the industry to address the issue.

Summary of Maintenance Activities: Condition 10 (6) (c)

Routine maintenance was performed throughout the reporting period. Chatham-Kent PUC utilises an electronic preventative maintenance program to track preventative maintenance. In addition to the routine maintenance, the following additional maintenance activities were completed for the reporting period:

•	Filter Cloth	\$ 50,000
•	Blower	30,000
•	New UV Bulbs (x 2)	12,600
•	Pump	7,000
•	Tower Chlorine Analyser Repair	5,500
•	Hypo Metering Pump for Re-Chlorination Station Repair	5,000

Quality Assurance and Control Measures: Condition 10 (6) (d)

The Chatham-Kent Public Utilities Commission followed a sampling schedule developed in accordance with the Certificate of Approval and applicable regulations for this reporting period.

Composite chemistry samples of the raw flow were collected using an auto sampler. Chemistry samples were submitted weekly to an accredited laboratory for analysis of CBOD₅, Total Suspended Solids, Total Kjeldhal Nitrogen, Nitrite and Nitrate, Total Phosphorus, Total Ammonia Nitrogen, Alkalinity and pH.

Composite chemistry samples of the effluent were collected using an auto sampler. Chemistry samples were submitted weekly to an accredited laboratory for analysis of CBOD₅, Total Suspended Solids, Total Kjeldhal Nitrogen, Total Phosphorus and Total Ammonia Nitrogen, Alkalinity, pH, Nitrite and Nitrate and Unionized Ammonia.

Bacteriological samples of the effluent were collected weekly according to the Sampling Program. Bacteriological samples were submitted weekly to an accredited laboratory for analysis.

In house samples were analysed by a licensed operator for pH and temperature.

Calibration and Maintenance on Effluent Monitoring Equipment Condition 10 (6) (e)

All required probes and sensors are cleaned, maintained and/or calibrated on a monthly basis or as required by manufacturers' specifications.

Monitoring equipment calibration/verification report(s) included for the following:

- Influent flow meter
- Effluent flow meter
- Spectrophotometer
- DO meter
- pH meter

Effluent Objectives Condition 10 (6) (f)

Table 1 outlines monthly average results of parameters tested compared to the objectives outlined in the Certificate of Approval Table 1 Effluent Objectives.

The following criteria was exceeded during this reporting period for the effluent objectives outlined in Condition 6 Effluent Objectives of the Certificate of Approval:

Total Suspended Solids in the following months: January, February, April, May, and December.

Total Ammonia-Nitrogen in the following months: January, April, May, June, and September.

Total Carbonaceous BOD in the following month: May.

Total Phosphorous in the following months:

January, February, March, April, May, June, July, August, September, October, November, and December.

The PUC has determined that the root cause of the majority of the issues is intermittent discharges from a local industry and is working closely with the industry to address them.

Sludge Management Condition 10 (6) (g)

During the reporting period no waste activated sludge was transferred for sludge stabilization and storage.

Outline of Anticipated Volumes in Next Reporting Period

The sludge production and sludge handling method for the coming reporting period is anticipated to be the similar to that of this reporting period.

Community Complaints: Condition 10 (6) (h)

There were no Customer Complaints received during the reporting period.

By-pass, Spill, or Abnormal Discharge Events: Condition 10 (6) (i)

There were no by-pass, spill, or abnormal discharge events for the reporting period beyond those already discussed.

Other Information the District Manager Requires: Condition 10 (6) (j)

No other information was required from the District Manager during this reporting period.

APPENDIX A

Yearly Operational Data Summary for the Reporting Period

Tilbury Water Pollution Control Plant Works # 120000916

											2000				
46.499	54.448	51.063	66.060	55.330	50.716	52.919	53.730	48.920	54.089	51.013	41.894	626.683	66.06	41.89	52.22
61.0	62.0	60.0	218.0	154.0	160.0	162.0	158.0	65.0	170.0	170.0	157.0		218.0	60.0	133.1
5.65	6.59	8.05	5.57	4.87	9.96	5.77	4.93	5.71	5.74	3.92	3.91	70.68	9.96	3.91	5.89
182.73	171.86	184.40	168.32	161.97	135.32	90.41	71.82	76.52	121.56	85.55	82.09	1532.55	184.40	71.82	127.71
0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00.0	00.0	00.0	0.00	0.00	00.0	00.0
2.51	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.09	00.0	00.0	2.65	2.51	00.0	0.22
0.10	0.16	0.23	8.46	0.22	0.39	0.29	0.03	0.01	0.19	0.11	0.01	10.22	8.46	0.01	0.85
402.4	474.1	444.3	542.1	471.1	429.9	474.2	491.0	460.6	459.9	443.2	377.1	5469.9	542.1	377.1	455.8
1.500	1.945	1.647	2.202	1.785	1.691	1.707	1.733	1.631	1.745	1.700	1.351	20.64	2.20	1.35	1.72
14	11	15.8	14	17.5	15	18.3	17	15.0	16.5	12	19.0		19.0	10.9	15.4
19	15.0	24	19	21	24	24.0	20.5	19	19.5	15	22		24	15.0	20.1
8.61	8.04	8.24	7.78	8.10	8.37	7.76	8.39	8.10	7.68	7.83	7.59		8.61	7.59	8.04
2.78	1.75	4.03	3.02	3.98	4.50	3.55	3.13	4.30	4.98	3.75	4.14		4.98	1.75	3.66
72	76	88	150	98	104	67	76	172	170	128	124		172	67	110
540	338	525	362	385	515	308	365	344	203	343	276		540	276	384
115	51	136	98	98	101	77	73	125	78	17	88		136	51	93
61.817	74.739	61.038	81.866	62.160	56.608	58.950	69.587	67.364	74.575	66.398	57.149	792.251	81.87	56.61	66.02
994.09	2669.26	1968.96	2728.86	2005.17	1886.94	1901.62	2244.74	2245.46	2405.65	2213.27	1843.53		2728.86	1843.53	2175.63
72.0	75.0	73.0	144.0	97.0	96.0	82.0	82.0	76.0	102.0	67.0	88.0		144.0	67.0	87.8
7.9	7.9	7.9	7.8	7.7	7.5	7.0	7.1	7.1	7.3	7.3	7.4		7.9	7.0	7.5
2.65	1.38	0.54	3.04	13.63	6.88	0.57	0.44	2.25	0.33	0.24	0.18		13.63	0.18	2.68
0.0364	0.0121	0.0094	0.0371	0.1585	0.1127	0.0078	0.0083	0.0413	0.0221	0.0060	0.0083		0.1585	0.0060	0.0383
0.0688	0.0398	0.0073	0.0650	0.2450	0.1287	0.005	0.008	0.014	0.002	0.002	0.001		0.245	0.001	0.049
3.4	2.2	1.5	4.0	14.9	8.4	1.6	1.1	3.0	1.2	1.1	1.0		14.85	0.974	3.6
5.8	4.6	4.9	5.5	5.0	6.0	8.4	4.9	5.1	4.8	5.5	10.3		10.3	4.6	5.9
0.146	0.181	0.090	0.240	0.189	1.076	0.672	0.833	0.345	0.390	0.318	0.258		1.076	060'0	0.395
0.97	0.76	0.85	0.85	1.13	1.09	1.06	1.85	1.78	1.80	1.75	1.79		1.85	0.76	1.31
7	9	5	7	12	4	2	2	2	2	4	5		12	2	5
292	268	280	280	330	305	192	245	184	223	243	230		330	184	256
3.6	3.3	2.3	4.4	10.5	2.5	2.0	2.0	2.4	2.5	2.0	2.0		10.5	2.00	3.3
4.47	4.74	3.71	2.75	1.43	2.31	2.50	2.44	2.57	2.52	3.29	3.34		4.74	1.43	3.01
10.3	9.8	10.4	12.8	16.3	19.8	22.4	23.7	23.8	20.9	16.6	14.0		23.8	9.8	16.7
10	10	24	13	10	10	10	11	77	10	22	15		27		15.1

	Jan-19		Feb-19 Mar-19	Apr-19	May-19	Apr-19 May-19 Jun-19	Jul-19	Aug-19	Sep-19	Oct-19 Nov-19 Dec-19	Nov-19	Dec-19	TOTAL	MAX	MIN	AVG
Orbal System																
Dissolved Oxygen Outer mg/L	0.74	0.54	0.53	0.62	0.57	0.00	0.66	0.27	n/a	0.28	0.28	0.54		0.74	0.00	0.46
Dissolved Oxygen Effluent mg/L	6.96	5.40	4.19	4.84	3.21	0.00	4.62	4.85	n/a	2.84	3.32	4.08		6.96	0.00	4.03
Temperature (Orbal Effluent) C	6.6	9.6	10.8	12.7	16.1	0.0	21.9	23.5	n/a	21.2	17.7	15.3		23.5	0.0	14.4
30 mins mg/L	145	177	158	116	102	151	432	614	452	503	403	350		614	102	300
MLSS mg/L	2124	2651	2301	1652	1768	1727	1416	1474	1311	1643	1958	2092		2651	1311	1843
MLVSS	1677	2061	1770	1449	1452	1383	1165	1202	1150	1409	1606	1704		2061	1150	1502
WLVSS %	29	92	27	82	78	62	81	84	89	86	82	81		89	76	81
SVI	68.0	66.5	68.3	66.2	59.0	87.6	288.6	404.8	326.4	305.8	205.0	165.7		404.8	59.0	176.0
F/M (BOD)	0.03	0.02	0.03	0.12	0.03	0.05	0.04	0.04	0.05	0.03	0.04	0.03		0.12	0.02	0.04
F/M (COD)	0.09	0.06	0.11	0.16	0.08	0.19	0.09	0.12	0.14	0.09	0.08	0.07		0.19	0.06	0.11
MCRT days	14.37	11.38	10.42	80.34	37.49	9.38	14.39	39.55	11.33	7.09	16.63	9.76		80.3	7.1	21.8
RAS																
Suspended Solids mg/L	3058	3579	3198	2211	2308	2497	2650	2667	2251	2497	3329	3293		3579	2211	2795
Volatile Suspended Solids mg/L	2431	2748	2361	1828	1824	1904	2063	2190	1935	2090	2665	2707		2748	1824	2229
Rvss %	29	92	76	80	77	77	79	82	86	84	81	82				
RAS Flow %	296	230	302	206	261	239	153	103	114	163	129	144		302	103	195
Alum																
Feed ml/min	330	355	355	353	233	124	30	25	22	36	68	121		355	22	171
Used Kg	5233.85	9371.83	10375.95	7545.21	3458.96	2486.00	558.88	480.63	390.91	671.42	1146.30	2672.51	44392.4	10376.0	390.9	3699.4
Dosage mg/L	111.8	179.2	212.3	121.9	78.2	52.5	10.6	9.1	8.1	12.1	23.1	66		212.3	8.1	73.7
Federal (Quarterly)																
Final Flow Qtr. m3		197593.6			200634.2			195901.0			198122.79					

Final Flow Qtr. m3	197593.6	200634.2	195901.0	198122.79	
CBOD Qtr. mg/L	3.0	5.8	2.1	2.17	
SS Qtr. mg/L	6.1	7.8	2.0	3.65	
Number of Days	06	91	92	92	

	2171
Federal WSER Acute Lethality	Average Daily Volume Effluent (m ³):

APPENDIX B

Calibration Reports for the Reporting Period

Endress Hauser ProMag Series Verification Report

AS FOUND CERTIFICATION

FORWARD FLOW DIRECTION

PASS

CLIENT DETA	IL.		EQUIPMENT DETAIL
CUSTOMER	Municipality of Chatham-Kent Tilbury	[MUT] MANUFACTURER	ENDRESS & HAUSER
CONTACT	Dan Carroll	MODEL	Promag 50P
	Senior Operator, Water / Waste Water	CONVERTER S/N:	6A042716000
	519-682-9033	FUSE	Pull Plug on Unit
		PLANT ID	Tilbury - Lyons Pumping Station
		METER ID	Raw Flow Meter
		FIT ID	FIT-102
		CLIENT TAG	Flow Meter FIT-102
		OTHER	N/A
VER. BY - FM	Travis Krayetski	GPS COORDINATES	N42 16.121 W082 26.133
Reference ec conduct this	agement Standards Information - quipment and instrumentation used to verification test is found in our AC- ent at the time this test was	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	March 15, 2019 Annual March, 2020

AS FOUND

AS LEFT

FLOWMETRIX

PROGRAMMING PARAMETERS

10	
mm	300
LPS	706.838
LPS	400.000
	1.22970
	0
	LPS

MATION	FORWARD TOTALIZER INFORM
9 M3	2766169
4 M3	2766244

DIFFERENCE	75 M3
	TEST CRITERIA
AS FOUND CERTIFICATION TEST	Yes
FORWARD FLOW DIRECTION	Yes
ALLOWABLE [%] ERROR	5
	COMPONENTS TESTED
CONVERTER DISPLAY	Yes

CONVERTER DISPLAT	res				
mA OUTPUT	Yes				
TOTALIZER	Yes				
ACCURACY BASED ON [% o.r.]	Yes				
ERROR DOCUMENTED IN THIS REPORT: BASED ON % o.r.					

FLOW TUBE SIMUL	ATION								
			[0.0	100.0	200.0	300.0	400.0	LPS
				0.0	14.1	28.3	42.4	56.6	% F.S. Flow
				0.0	25.0	50.0	75.0	100.0	% F.S. Range
REF. FLOW RATE				0.00	100.00	200.00	300.00	400.00	LPS
MUT [Reading]				0.00	99.10	197.56	296.73	395.73	LPS
MUT [Difference]				0.00	-0.90	-2.44	-3.27	-4.27	LPS
MUT [% Error]				n/a	-0.90	-1.22	-1.09	-1.07	%
mA OUTPUT				4.000	8.000	12.000	16.000	20.000	mA
MUT [Reading]	min.	4	mA	4.000	7.959	11.912	15.870	19.816	mA
MUT [Difference]	max.	20	mA	0.000	-0.041	-0.088	-0.130	-0.184	mA
MUT [% Error]				0.00	-0.51	-0.73	-0.81	-0.92	%
TOTALIZER						REF. F	LOW RATE	400.000	LPS
						TOTAL	IZER [MUT]	26.0	M3
						TEST 1	IME	65.10	SECONDS
						TOTAL	IZER [REF]	26.040	M3
1						ERROF	र	-0.15	%

~~	BARACHITO	
CO	MMENTS	

QUALITY MANAGEME		ARDS INFO.	RES	ULTS	
[QMS] INFORMATION	IDENT.	ID #	TEST	AVG	PASS
[REFERENCE] FTS	E&H-FC	1	TEST	% o.r.	FAIL
PROCESS METER	DMM	12	DISPLAY	-1.07	PAS
ANALOG METER	AM	N/A	mA OUTPUT	-0.60	PAS
STOP WATCH	SW	Yes	TOTALIZER	-0.15	PAS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

Multi-Wavelength Colorimeter Verification Report

PASS

) WW	AS FOUND CERTIFICATION
CUSTOMER CONTACT	Municipality of Chatham-Kent Maru Lakshmanan Chief Operator Tilbury ON T. 226 312 2025 x4352 C. 519-358 5222 E. marul@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH DR3900 1604407 Tilbury 05 Tilbury STP n/a
VER. BY	Randy Nichol	TOLERANCE [mg/L] STANDARD RECOVERY [0.05
Standards, refere	ent Standards Information - nce equipment, and sed to conduct this test outlining y date is found in our current	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	%] 90 Mar 12, 2019 Annual March 2020

TUN/11/

CHLORINE [CI2] SECONDARY STANDARDS

STANDARD	BLANK [mg/L]			READING mg/L	PASS FAIL
STD 1	0.25	+/-	0.09	0.23	PASS
STD 2	0.94	+/-	0.10	0.93	PASS
STD 3	1.71	+/-	0.14	1.71	PASS

CHLORINE [CI2] PRIMARY STANDARDS

STANDARD VALUE [mg/L]	27.3
STANDARD ADDITIONS SIZE [mL]	0.200

BLANK SAMPLE SIZE [mL] 10.0

DPD LOT# EXPIRY DATE

A8134 May-23

SAMPLE TEST #	Cl ₂ STANDARD	SAMPLE	STANDARD	REFERENCE READING	MUT READING	DIFF. ERROR	PASS FAIL	STANDARD
	mL	mL	mg/L	mg/L	mg/L	mg/L		%
BLANK	0 _	10.000	0	0	0	0	PASS	N/A
STD 1	0.200	10.200	0.54	0.53	0.52	-0.01	PASS	
STD 2	0.400	10.400	1.05	1.00	1.01	0.01	PASS	98.1
STD 3	0.600	10.600	1.55	1.43	1.45	0.02	PASS	95.2
						0.02	FA00	92.3
				AVERAGE	RESULTS	0.01	PASS	95.2

MMENTS	[QMS] INFORM			
			ITEM	1
	[REFERENCE]] HACH PCII	HACH P	
	10.0 mL PIPET		HACH-P	P-10
	0.2 mL PIPETT	ΓE	G-PP-2	
	SECONDARY	STANDARDS	AS-CLS	s
	PRIMARY STA		AS-CLP	-
	ABSORBANCE	E STANDARD	S AS-ABS	-
	ABSC	RBANCE CHI	ECKS	
	WAVELENGTH	TESTED	PASS/FAIL	
	420 nm	Yes	PASS	
	520 nm	Yes	PASS	
	560 nm	Yes	PASS	
	610 nm	Yes	PASS	

Primary and Secondary standards were used to confirm the overall accuracy of this instrument along with conducting an analytical comparative technique against a reference meter. All values are considered "AS FOUND" readings. If the "AS FOUND" readings were not within acceptable limits, an "AS LEFT" report will be issued if the instrument was able to be calibrated to indicate the overall accuracy of the meter. If the meter was not calibrated for any reason, a

T	_/	W	W		AS
				-	

AS LEFT

CUSTOMER CONTACT	Municipality of Chatham-Kent Maru Lakshmanan Chief Operator Tilbury ON T. 226 312 2025 x4352 C. 519-358 5222 E. marul@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH HQ30D 080200018124 Tilbury STP Tilbury STP n/a
VER. BY	Randy Nichol	TOLERANCE [pH]	0.05
Standards, refere instrumentation u	nent Standards Information - ence equipment, and sed to conduct this test outlining ry date is found in our current	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 12, 2019 Annual Mar-2020

AS FOUND

DO Concentration [mg/L]	8.05
DO Concentration [%]	89.1
Barometric Pressure [hpa]	1010
Temperature	20.1

AS LEFT

DO Concentration [mg/L]	9.31
DO Concentration [%]	98.9
Barometric Pressure [hpa]	1010
Temperature	18.1

COMMENTS

[QMS] INFORMATION

ITEM

<u>ID #</u>

Performed calibration as per manufacturers suggested technique

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

Dissolved Oxygen Verification/Calibration Report

... -

TINN

AS LEFT PASS

CUSTOMER CONTACT	Municipality of Chatham-Kent Maru Lakshmanan Chief Operator Tilbury ON T. 226 312 2025 x4352 C. 519-358 5222 E. marul@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	Aysix 3100 30S7385 Wheatley Tilbury STP n/a
VER. BY	Randy Nichol	TOLERANCE [pH]	0.05
Standards, reference instrumentation use	nt Standards Information - ce equipment, and ed to conduct this test outlining date is found in our current	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 12, 2019 Annual Mar-2020

AS FOUND

DO Concentration [mg/L]	8.3
DO Concentration [%]	n/a
Barometric Pressure [hpa]	n/a
Temperature	15.5

AS LEFT

9.3
n/a
n/a
15.6

COMMENTS

Comparision Match to HQ30D 080200018124

[QMS] INFORMATION

ITEM

ID #

Performed calibration as per manufacturers suggested technique

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

Dissolved Oxygen Verification/Calibration Report

		TIWW	AS LEFT	PASS
CUSTOMER CONTACT	Municipality of Chatham-Kent Maru Lakshmanan Chief Operator Tilbury ON T. 226 312 2025 x4352 C. 519-358 5222 E. marul@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER		Aysix 3100 N/A (on wall) Tilbury STP Tilbury STP n/a
VER. BY	Randy Nichol	TOLERANCE [pH]		0.05
Standards, referen instrumentation us	ent Standards Information - ce equipment, and ed to conduct this test outlining v date is found in our current	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE		Mar 12, 2019 Annual Mar-2020

AS FOUND

DO Concentration [mg/L]	12.6
DO Concentration [%]	n/a
Barometric Pressure [hpa]	n/a
Temperature	10.5

AS LEFT

DO Concentration [mg/L]	9.3
DO Concentration [%]	n/a
Barometric Pressure [hpa]	n/a
Temperature	10.5

COMMENTS

Comparision Match to HQ30D 080200018124

[QMS] INFORMATION

ITEM

<u>ID #</u>

Performed calibration as per manufacturers suggested technique

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

AS FOUND CERTIFICATION

PASS

180

COMPONENTS TESTED

ERROR DOCUMENTED IN THIS REPORT; BASED ON % F.S.

TEST CRITERIA

М3

Yes

Yes

Yes

Yes

No

5

CLIENT DETA	IL				EQUIPMENT DETAIL
CUSTOMER	Municipality of Cha	tham-Kent Tilbury		[MUT] MANUFACTURE	R Milltronics
CONTACT	Dan Carroll			MODEL	OCMIII
	Senior Operator, V	Vater / Waste Wate	er -	CONVERTER SERIAL N	UMBER 082204105XV
	519-682-9033				
				PLANT ID	Tilbury STP
				METER ID	Final Effluent
				FIT ID	FIT-701
				CLIENT TAG	Flow Meter FIT-701
				OTHER	N/A
VER. BY - FM	Paris Machuk			GPS COORDINATES	N42 16.344 W082 26.874
Quality Mana	gement Standards	Information -			
Reference eq	uipment and instru	imentation used t	to	VERIFICATION DATE	March 15, 2019
conduct this v	erification test is f	ound in our AC-		CAL, FREQUENCY	Annual
QMS docume	ent at the time this	test was		CAL. DUE DATE	March, 2020
	IG PARAMETERS				TOTALIZER
THROAT DIME		inches	12	AS FOUND	14125619 M3
EMPTY DISTAI	NCE	m	1.204	AS LEFT	14125799 M3
			0 700		

DIFFERENCE

mA OUTPUT

TOTALIZER

AS FOUND CERTIFICATION TEST

ACCURACY BASED ON [% o.r.]

ALLOWABLE [%] ERROR

CONVERTER DISPLAY

	3 844
m	1.204
m	0.762
m	0.137
m	0.305
LPS	456.8
LPS	456.8
	m m m LPS

Ultrasonic sensor installed to ensure full scale flow condition

			L	8.4	24.2	37.5	69.5	97.6	% F.S. Range
				0.150	0.300	0.400	0.600	0.750	m
REF. FLOW RATE				38.497	110.559	171.297	317.513	445.922	LPS
MUT [Reading]				39.754	112.600	173.770	320.240	448.030	LPS
MUT [Difference]				1.257	2.041	2.473	2.727	2,108	LPS
MUT [% Error]				0.28	0.45	0.54	0.60	0.46	%
mA OUTPUT				5.348	7.872	10.000	15.121	19.618	mA
MUT [Reading]	min.	4.000	mA	5.368	7.930	10.076	15.225	19,718	mA
MUT [Difference]	max.	20.000	mA	0.020	0.058	0.076	0.104	0,100	mA
MUT [% Error]				0.10	0.29	0.38	0.52	0.50	%
TOTALIZER - REF. F	LOW RAT	TE			· · · · · · · · · · · · · · · · · · ·			445.922	LPS
TOTALIZER [MUT]								44	M3
TEST TIME								98.99	SECONDS
CALC. TOTALIZER								44.142	M3
ERROR								-0.32	%

COMMENTS	QUALITY MANAGEMENT STANDARDS INFO.			RESULTS		
		IDENT. Sim. BOARD	ID # n/a	TEST	AVG %FS	PASS FAIL
	PROCESS METER STOP WATCH	DMM SW	11 Yes	DISPLAY mA OUTPUT TOTALIZER	0.51 0.36 -0.32	PASS PASS PASS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.