PUBLIC UTILITIES COMMISSION FOR THE MUNICIPALITY OF CHATHAM-KENT

DRESDEN WASTEWATER TREATMENT PLANT

2019 PERFORMANCE REPORT

January 1 to December 31, 2019

Amended Certificate of Approval # 8101-7QHKYR

Plant Type and Brief Description:

The Dresden Water Pollution Control Plant provides treatment of wastewater for approximately 2,500 residents of Dresden. Wastewater is collected and transported to the plant by gravity through the sanitary sewer system. As such, there are no sanitary pump stations located in Dresden.

The Dresden Water Pollution Control Plant is an Extended Aeration Plant with chemical phosphorus removal and final effluent disinfection. The plant was built in 1976 with a maximum design flow of 4,546m³/day. The plant discharges final effluent to the Sydenham River.

The existing treatment system includes the following processes:

- Raw sewage pumping
- Screening collection and removal
- Aerated Grit System
- Aeration Tanks
- Chemical phosphorus removal
- Settling Clarifiers
- Chlorine disinfection of final effluent
- Sludge collection and pumpage
- Sludge holding lagoons

Sludge from the holding lagoons is applied to agricultural land in the spring and fall each year.

REPORTING REQUIREMENTS

UNDER CERTIFICATE OF APPROVAL # 8101-7QHKYR

Summary and Interpretation of Monitoring and Comparison to the Effluent Limits: Condition 9 (5) (a)

Tables 1 and 2 outline monthly average results of parameters tested compared to the limits outlined in the Certificate of Approval Table 2 Effluent Limits.

The Total Phosphorus monthly average concentration limit was exceeded in the month of August.

The limit for the Total Phosphorus concentration is 1.0 mg/L and the August average concentration was 2.04 mg/L.

The Total Suspended Solids monthly average concentration limit was exceeded in the month of August.

The limit for the Total Phosphorus concentration is 25 mg/L and the August average concentration was 32 mg/L.

Success and Adequacy of the Works

During the reporting period, the annual average daily flow was 1,515 m³/day, which represents approximately 33% of the rated capacity of 4,546 m³/day.

There were no flow exceedances based on the Average Daily Flow during this reporting period. Overall, the Dresden WPCP performed well for this reporting period.

Table 1: Summary of Monitoring Data and Comparison to Effluent Limits & Objectives – Concentrations

as well as rated capacity to the sewage works

Rated Capacity: 4,546 m³/day average daily flow

Total sewage flow to the works during a calendar year divided by the number of days during which sewage was flowing to the works that year

Month	Total Monthly Influent Flow m ³	Avg Daily Influent Flow /Month m³/day	Avg Daily Influent Flow/Year m³/day	% of Plant Capacity	CBOD₅ mg/L	рН	Total P mg/L	Total S.S. mg/L	Total Cl ₂ mg/L	E.coli
Limits	none	none	4,546	100	25	6.0 - 9.5	1.0	25		200
Objectives	none	none	4,546	100	15	6.0 - 9.5	0.8	15		
Jan	37,668	1,215			2.0	7.89	0.09	3.0	0.96	10
Feb	39,995	1,428			2.0	8.02	0.06	3.0	1.06	10
Mar	43,689	1,409			2.0	7.82	0.06	3.0	0.71	10
Apr	51,050	1,702			2.0	8.03	0.10	4.0	0.84	<10
Мау	53,944	1,740			2.0	8.08	0.19	2.8	0.67	13.16
Jun	41,960	1,399			2.0	7.82	0.37	11.5	0.69	28.66
Jul	36,132	1,166			2.0	7.92	0.26	3.2	0.65	15.85
Aug	36,201	1,168			3.3	7.35	2.04	32	1.17	31.78
Sep	87,671	2,922			2.0	8.26	0.14	2.8	0.63	15.65
Oct	56,896	1,835			2.0	8.00	0.59	4.5	0.89	20.93
Νον	34,366	1,146			2.0	8.00	0.27	3.0	0.87	15.65
Dec	33,270	1,073			2.0	7.87	0.14	1.4	0.94	10.00
Year			1,515	33%						
	Yearly Total Flow m ³				Yearly Ma	ximums				
	552,842	2,922			3.3	8.26	2.04	32	1.17	31.78

Table 2: Summary of Monitoring Data and Comparison to Effluent Limits – Loadings

Month	Avg Daily influent Flow /Month m³/day	CBOD₅ Kg/Day	Total S.S. Kg/Day	Total P Kg/Day
Limits	none	113	113	4.5
Jan	1,215	2.43	3.65	0.11
Feb	1,428	2.86	4.29	0.08
Mar	1,409	2.82	4.23	0.09
Apr	1,702	3.40	6.81	0.16
Мау	1,740	3.48	4.79	0.33
Jun	1,399	2.80	16.08	0.52
Jul	1,166	2.33	3.73	0.30
Aug	1,168	3.80	37.37	2.38
Sep	2,922	5.84	8.18	0.40
Oct	1,835	3.67	8.26	1.09
Nov	1,146	2.29	3.44	0.31
Dec	1,073	2.15	1.50	0.15
		Yearly M	aximums	
	2,922	5.84	37.37	2.38

Operating Problems and Corrective Action: Condition 9 (5) (b)

The Dresden WPCP encountered an operational problem during the month of August while the one of its aeration tanks was down for maintenance. Due to toxic inflow, the operational aeration tank contents were transferred to a lined holding lagoon on the facility property. Both aeration tanks have were reseeded from another facility to restart the process.

Summary of Maintenance Activities: Condition 9 (5) (c)

All regular and routine maintenance in the plant was carried out throughout the reporting period. Aeration tanks were drained and cleaned as well as inspected. Chatham-Kent PUC utilises an electronic preventative maintenance program to track preventative maintenance. In addition to the routine maintenance, the following additional maintenance activities and equipment replacement was completed for the reporting period:

٠	Motor Control Panel and Switch Gear Replacement (Main Lift Bld.)	90,000
•	Clarifier Effluent Piping (Replaced)	70,000
•	New Raw Water Pump #3	25,000
٠	Replacement of Wet Well Gates (all)	18,000
•	Replacement Level Sensors (Wet Wells)	5,000
•	Reparation of Raw Pump #1	2,000
٠	pH Meter Installation (Raw Water)	2,000

Quality Assurance and Control Measures: Condition 9 (5) (d)

Dresden Water Pollution Plant followed a sampling schedule developed in accordance with the Certificate of Approval and applicable regulations for this reporting period.

Composite chemistry samples of the raw flow were collected using an auto sampler. Chemistry samples were submitted monthly to an accredited laboratory for analysis of BOD₅, Total Suspended Solids, Total Phosphorus, pH and Total Kjeldahl Nitrogen.

Composite chemistry samples of the effluent were collected using an auto sampler. Chemistry samples were submitted weekly to an accredited laboratory for analysis of CBOD₅, Total Suspended Solids, Total Kjeldahl Nitrogen, Total Phosphorus and Total Ammonia Nitrogen, Alkalinity, pH, Nitrite and Nitrate.

Bacteriological samples of the effluent were collected weekly according to the Sampling Program. Bacteriological samples were submitted weekly to an accredited laboratory for analysis.

In house samples were analyzed by a licensed operator for pH, DO, and temperature.

Calibration and Maintenance on Effluent Monitoring Equipment: Condition 9 (5) (e)

All required probes and sensors are cleaned, maintained and/or calibrated on a monthly basis

or as required by manufacturers' specifications.

Monitoring equipment calibration/verification report(s) included for the following:

- Influent flow meter
- Effluent flow meter
- Spectrophotometer

Effluent Objectives: Condition 9 (5) (f)

Table 1 outlines monthly average results of parameters tested compared to the objectives outlined in the Certificate of Approval Table 1 Effluent Objectives.

The Total Phosphorus monthly average concentration effluent objective was exceeded in the month of August.

The effluent objective for the Total Phosphorus concentration is 0.8 mg/L and the August average concentration was 2.04 mg/L.

The Total Suspended Solids monthly average concentration effluent objective was exceeded in the month of August.

The effluent objective for the Total Phosphorus concentration is 15 mg/L and the August average concentration was 32 mg/L.

Sludge Management: Condition 9 (5) (g)

During the reporting period, waste activated sludge was transferred to the sludge holding

lagoons. Terrapure Environmental Organic Solutions was contracted to land apply the sludge according to agreements listed below.

Tabulation of the Volume of Sludge Generated Summary of Locations where the Sludge was Disposed

MONTH	SLUDGE VOLUME in m ³	TRANSFER TO LOCATION	AGREEMENT NUMBER
Мау	1,000	Concession 2, Lot 14 Concession 2, Lot 15 Concession Block between Con 2 & 3, Lot 18 Zone Township Chatham Kent	NASM Plan# 16256
November	347	Concession 2, Lot 4 Zone Township Chatham Kent	NASM Plan# 16256
Total Sludge Applied	1,347		

Outline of Anticipated Volumes in Next Reporting Period

The sludge production and sludge handling method for the next reporting period is anticipated to be similar to that of this reporting period.

Community Complaints: Condition 9 (5) (h)

There were no Customer Complaints received during the reporting period.

By-pass, Spill, or Abnormal Discharge Events: Condition 9 (5) (i)

There were no by-pass or spill events for the reporting period.

Other Information the District Manager Requires: Condition 9 (5) (j)

No other information was required by the District Manager during this reporting period.

APPENDIX A

Yearly Operational Data Summary for the Reporting Period

2019	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	TOTAL	MAX	MIN	AVG
Raw Sewage	0// 20	20 00E	00 / 01			11 0 / 0	0 1 1 J	100.70	14 / 40	E/ 00/	, , c , c	020 00	010			000
E	000.15	066.60	43.007		0.0.744	41.900	20.152	102.05	1/0./0	060.00	34.300	33.27U	252.842	1.10.18	33.270	40.070
Avg. Daily Flow 1000 m ³ /d	1.215	1.428	1.409	1.702	1.740	1.399	1.166	1.168	2.922	1.835	1.146	1.073		2.922	1.073	1.517
Max Daily Flow 1000 m ³ /d	2.377	2.092	3.080	4.794	3.704	2.640	1.797	2.195	4.443	5.882	2.151	1.658		5.882	1.658	3.068
Final Effluent																
Total Flow 1000 m ³	37.606	41.143	45.13	46.395	49.93	45.277	36.035	28.7801	74.637	52.805	34.308	30.172	522.218	74.637	28.780	43.518
Avg. Daily Flow 1000 m ³ /d	1.213	1.469	1.456	1.547	1.611	1.509	1.162	1.028	2.488	1.703	1.144	0.973		2.488	0.973	1.442
Max Daily Flow 1000 m³/d	2.282	2.071	1.893	3.314	3.502	2.082	1.563	1.615	4.018	5.507	2.039	2.135		5.507	1.563	2.668
Disinfection																
CI2 Kgs. Used	93.6	88.2	76.2	103.7	106.4	85.9	86.8	107.3	168.2	143.0	110.5	71.8	1241.54	168.18	71.82	103.461
Cl2 Avg. Dosage mg/L	2.5	2.2	1.7	2.0	2.0	2.0	2.4	3.0	1.9	2.5	3.2	2.2		3.2	1.7	2.305
Cl2 Avg. Residual mg/L	0.96	1.06	0.71	0.84	0.67	0.69	0.65	1.17	0.63	0.89	0.87	0.94		1.2	9.0	0.839
# of Samples	23	20	21	22	23	20	23	17	21	23	21	21				
Aluminum Sulphate																
Total Litres Used	2498.40	2419.20	2419.20	3456.00	5083.20	4595.0	3391.20	4184.64	4636.80	3931.20	3024.00	3124.80	42763.68	5083.20	2419.20	3563.640
Avg. Monthly Dosage	23.61	21.69	21.88	28.35	37.61	42.80	35.14	45.34	22.37	30.56	33.22	35.49		45.3	21.7	31.506
Final Effluent Loadings	••••			•	•				•	1		!		1		
	2.43	2.86	2.82	3.40	3.48	2.80	2.33	3.80	5.84	3.67	2.29	2.15		5.84	2.15	3.16
Solids, Suspended kg/d	3.65	4.29	4.23	6.81	4.79	16.08	3.73	37.37	8.18	8.26	3.44	1.50		37.37	1.50	8.53
Phosphorous, Total as P, kg/d	0.11	0.08	0.09	0.16	0.33	0.52	0.30	2.38	0.40	1.09	0.31	0.15		2.38	0.08	0.49
Ammonia as N, kg/d	0.24	0.08	0.18	0.18	0.16	1.02	0.07	0.32	0.29	0.20	0.06	0.09		1.02	0.06	0.24
Hauled Sludge																
Volume m ³					1,000						347		1347.0	1000.0	347.0	673.50
рН					6.94						7.47			7.47	6.94	7.21
Total Solids mg/l					20,000						27,000			27000.00	20000.00	23500.00
Total P kg/m3					450.00						630.00			630.00	450.00	540.00
Nitrogen kg/m3					0.12						0.13			0.13	0.12	0.13

	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	TOTAL	MAX	NIN	AVG
Microbiological																
results are geometric means																
E.Coli Results CFU/100ml	10.00	10.00	10.00	10.00	13.16	28.66	15.85	31.78	15.65	20.93	15.65	10.00		31.78	10.00	15.97
# of Samples	5	4	4	5	4	4	5	4	5	4	4	5	53	5	4	4
Raw Sewage																
BOD5, mg/L	180.0	210.0	860.0	300.0	120.0	120.0	180.0	160.0	75.0	180.0	76.0	150.0		860.0	75.0	217.6
Nitrogen,T. Kjeldahl as N, mg/L	25.0	24.0	18.0	22.0	17.0	33.0	34.0	35.0	27.0	14.0	15.0	25.0		35.0	14.0	24.1
Н	7.46	7.00	4.32	6.84	7.42	7.16	7.49	7.41	7.43	7.79	7.48	7.10		7.79	4.32	7.1
Phosphorous, Total as P, mg/L	3.1	4.2	2.7	4.6	3.3	4.9	5.4	5.3	2.9	5.3	2.6	5.3		5.4	2.6	4.1
Solids, Suspended mg/L	160	120	71	190	120	150	210	190	70	160	110	240		240	70	149
	1	1	1	1	1	1	1	1	1	1	1	1	12	1	1	1
Final Effluent																
Total Ammonia mg/l	0.20	90'0	0.13	0.11	60'0	0.73	0.06	0.27	0.10	0.11	0.05	0.08		0.73	0.05	0.2
Total CBOD5 mg/l	2.00	2.00	2.00	2.00	2.00	2.00	2.00	3.25	2.00	2.00	2.00	2.00		3.25	2.00	2.1
Total Kjeldahl Nitrogen (TKN) mg/l	0.68	0.56	0.58	0.80	1.30	1.23	0.93	1.25	0.73	0.97	1.18	0.72		1.30	0.56	0.9
pH (Maxxam Lab Results)	7.89	8.02	7.82	8.03	8.08	7.82	7.92	7.35	8.26	8.00	8.00	7.87		8.26	7.35	7.9
Total Phosphorus mg/l	0.09	0.06	0.06	0.10	0.19	0.37	0.26	2.04	0.14	0.59	0.27	0.14		2.04	0.06	0.4
Total Suspended Solids mg/L	3.00	3.00	3.00	4.00	2.75	11.50	3.20	32.00	2.80	4.50	3.00	1.40		32	1.4	6.2
Alkalinity (Total as CaCO3) mg/l	136.00	142.50	175.00	156.80	157.50	109.00	98.80	37.00	318.20	222.00	180.00	115.60		318.20	37.00	154.0
Nitrite mg/1	0.02	0.03	0.18	0.10	0.06	0.45	0.04	0.13	0.02	0.04	0.07	0.02		0.45	0.02	0.1
Nitrate mg/l	19.24	13.75	5.75	14.84	19.01	24.48	20.30	38.80	13.37	30.78	15.90	18.24		38.80	5.75	19.5
Temp.°C	10.07	9.80	10.29	12.77	15.24	17.47	20.76	20.99	19.73	23.23	13.25	12.23		23.23	9.80	15.5
# of Samples	2	4	4	5	4	4	5	4	5	4	4	5	53	5	4	4
Total Unionized Ammonia mg/l (Pro)	0.0011	0.0007	0.0020	0.0021	0.0015	0.0073	0.0011	0.0036	0.0038	0.0029	0.0008	0.0007		0.007263	0.000658	0.002305
													_			
Federal (Quarterly)																
Final Flow Qtr. m3		123879.00	C		141602.00			139452.10			117285.00					
CBOD Qtr. mg/L		2.00			2.00			2.42			2.00					
SS Qtr. mg/L		3.00			6.08			12.67			2.97					
Number of Days		06			91			92			92					

 Federal WSER Acute Lethality

 Average Daily Volume Effluent (m³):
 1431

APPENDIX B

Calibration Reports for the Reporting Period

Western Office 2088 Jetstream Road London, Ontario N5V 3P6 Eastern Office 1602 Old Wooler Road Wooler, Ontario K0K 3M0

AS FOUND CERTIFICATION

				- re <mark>n k</mark> ala	PA	ASS
CLIENT DETA	IL			E	QUIPMENT DE	ETAIL
CUSTOMER	Chatham-Kent, North-I	East Area		[MUT] MANUFACTURER		ronics
CONTACT	Todd Daily, Senior Op	erator		MODEL	0	СМШ
	Dresden Sewage Trea	itment Plant		CONVERTER SERIAL NUMBER	-	N/A
	699 Camden Street, D Cell: 519-359-2815	resden ON				
				PLANT ID Dresden Water P	ollution Control	I Plant
				METER ID	Raw Flow (Inf	fluent)
				FIT ID	,	T-201
				CLIENT TAG		N/A
				OTHER		N/A
VER. BY - FM	Paris Machuk/Brendon	1 Jacksic		GPS COORDINATES		N/A
Quality Mana	gement Standards Inf	ormation -		ADDRESS 699 Com	den St. Dresde	n, ON
Reference en	uinment and instrume	entation used	to	VERIFICATION DATE	January 31,	2019
Veletelles ed	alphionic and matining					
conduct this v	uipment and instrume verification test is foun	d in our AC-		CAL. FREQUENCY	A	Annual
conduct this v QMS docume	verification test is foun ent at the time this test	id in our AC- t was		CAL. FREQUENCY CAL. DUE DATE	A January,	Annual
QMS docume	verification test is foun ent at the time this test	id in our AC- t was				Annual , 2020
QMS docume PROGRAMMIN THROAT DIME	ent at the time this test NG PARAMETERS ENSION (DN)	id in our AC- t was	12		January,	Annual , 2020
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI	ent at the time this test NG PARAMETERS ENSION (DN)	t was		CAL. DUE DATE	January, TOTAL	Annual 2020
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD	ent at the time this test NG PARAMETERS ENSION (DN)	t was inches	12 1.365 0.293	CAL. DUE DATE	January, TOTAL 6447924	Annual , 2020 LIZER M3
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI	ent at the time this test NG PARAMETERS ENSION (DN)	inches m	12 1.365 0.293 1.072	CAL. DUE DATE AS FOUND AS LEFT	January, TOTAL 6447924 6447967	Annual , 2020 LIZER M3 M3 M3
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD	ent at the time this test NG PARAMETERS ENSION (DN) NCE	inches m m m m	12 1.365 0.293	CAL. DUE DATE AS FOUND AS LEFT	January, TOTAL 6447924 6447967 43	Annual , 2020 LIZER M3 M3 M3
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M M3/D	12 1.365 0.293 1.072	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE	January, TOTAL 6447924 6447967 43	LIZER M3 M3 M3 FERIA
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m m	12 1.365 0.293 1.072 0.300	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST	January, TOTAL 6447924 6447967 43	Annual 2020 LIZER M3 M3 M3 FERIA Yes
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M M3/D	12 1.365 0.293 1.072 0.300 9200.8	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST ALLOWABLE [%] ERROR	January, TOTAL 6447924 6447967 43	LIZER M3 M3 M3 IERIA Yes 15
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M M3/D	12 1.365 0.293 1.072 0.300 9200.8	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST ALLOWABLE [%] ERROR	January, TOTAL 6447924 6447967 43 TEST CRIT	LIZER M3 M3 M3 IERIA Yes 15
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M M3/D	12 1.365 0.293 1.072 0.300 9200.8	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST ALLOWABLE [%] ERROR COM	January, TOTAL 6447924 6447967 43 TEST CRIT	LIZER M3 M3 M3 IERIA Yes 15
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW	ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M M3/D	12 1.365 0.293 1.072 0.300 9200.8	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST ALLOWABLE [%] ERROR COM	January, TOTAL 6447924 6447967 43 TEST CRIT	Annual , 2020 M3 M3 M3 FERIA Yes 15 STED yes
QMS docume PROGRAMMIN THROAT DIME EMPTY DISTAI MAX. HEAD DEAD ZONE BLANKING DIS MAX. FLOW F.S. RANGE - (ent at the time this test NG PARAMETERS ENSION (DN) NCE STANCE	inches m m m M3/D M3/D	12 1.365 0.293 1.072 0.300 9200.8 9200.0	CAL. DUE DATE AS FOUND AS LEFT DIFFERENCE AS FOUND CERTIFICATION TEST ALLOWABLE [%] ERROR CONVERTER DISPLAY MA OUTPUT	January, TOTAL 6447924 6447967 43 TEST CRIT	LIZER M3 M3 M3 IERIA Yes 15 STED yes yes

AS FOUND TEST RESULTS 19.5 36.2 56.0 78.7 96.0 % F.S. Range 0.100 0.150 0.200 0.250 0.285 m **REF. FLOW RATE** 1794.44 3326.13 5153.43 7237.58 8834.92 M3/D MUT [Reading] 2042.60 3684.98 5635,50 7605.71 9332.52 M3/D MUT [Difference] 248.16 358.85 482.07 368.13 497.60 M3/D MUT [% Error] 2.70 3.90 5.24 5.41 4.00 % mA OUTPUT 7.121 9.784 12.962 16.586 19.364 mΑ MUT [Reading] 4.000 7.578 10.358 min. mΑ 13,999 17.211 20.289 mA MUT [Difference] max. 20.000 mA 0.457 0.574 1.037 0.625 0.925 mΑ MUT [% Error] 2.29 2.87 5.19 3.12 4.63 % TOTALIZER - REF. FLOW RATE 8834.924 M3/D TOTALIZER [MUT] 10 МЗ TEST TIME 91.99 SECONDS CALC. TOTALIZER 9.407 МЗ ERROR 5.93 %

COMMENTS

Note: Extreme cold in effect - may be causing over reading but should be within +/- 15% if waste water by MOE standards

ing over	QUALITY MANAGEME	ENT STANDARD	S INFO.	RES	JLTS	
ste water by	[QMS] INFORMATION [REFERENCE] LEVEL	IDENT. Sim. BOARD	ID # Yes	TEST	AVG %FS	PASS FAIL
	PROCESS METER STOP WATCH	DMM SW	1 Yes	DISPLAY mA OUTPUT TOTALIZER	4.64 3.62 5.93	PASS PASS PASS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

Western Office 2088 Jetstream Road London, Ontario N5V 3P6 Eastern Office 1602 Old Wooler Road Wooler, Ontario K0K 3M0

AS FOUND CERTIFICATION

								P	ASS
CLIENT DETA							FC		FTAIL
CUSTOMER CONTACT	Chatham-Kent, No Todd Daily, Senior Dresden Sewage 699 Camden Stree Cell: 519-359-281	r Operator Treatment Plan et, Dresden ON			MODE	MANUFACTURI L ERTER SERIAL	ER	Mil	Itronics DCM III N/A
					PLANT METEI FIT ID CLIEN OTHEI	R ID T TAG	den Water Po	Effluer FIT-E	ol Plant nt Flow Effluent IT-601 N/A
VER. BY - FM	Paris Machuk					OORDINATES			N/A
Reference ec conduct this	agement Standards quipment and instru- verification test is f ent at the time this	umentation us	ed to C-		CAL. F	ESS ICATION DATE REQUENCY DUE DATE	699 Camde	en St. Dresde January 31 January January	l, 2019 Annual
PROGRAMMI	NG PARAMETERS							TOTA	LIZER
THROAT DIME	ENSION (DN)	inches	12		AS FO	UND		8151340	M3
EMPTY DISTA	NCE	m	0.875		AS LEI	-T		8151380	M3
MAX. HEAD		m	0.293		DIFFE	RENCE		40	MЗ
DEAD ZONE		m	0.582					TEST CRI	TERIA
BLANKING DI	STANCE	m	0.300		AS FO	UND CERTIFIC	ATION TEST		Yes
MAX. FLOW F.S. RANGE -	O/P	M3/D M3/D	9207.0 9206.0		ALLOV	VABLE [%] ERR	OR		5
							COMP	ONENTS TE	STED
					CONVI	ERTER DISPLA	ſ		yes
					mA OU	ITPUT			Yes
					TOTAL				yes
1.114	and the state of t				ACCU	RACY BASED O			no
Ultrasonic sens	sor installed to ensur	e tull scale flow	condition			ERROR DOCUMEN	TED IN THIS REP	ORT; BASED ON	N % F.S.
AS FOUND TE	ST RESULTS	· · · · · ·							
			19.5	36.1	56.0	78.6	96.0	% F.S. F	Range
			0.100	0.150	0.200	0.250	0.005		-

				19.5	36.1	56.0	78.6	96.0	% F.S. Range
				0,100	0.150	0.200	0.250	0.285	m
REF. FLOW RATE				1794.44	3326.13	5153.43	7237.58	8834.92	M3/D
MUT [Reading]				1744.20	3227.88	5144.20	7212.12	8800.20	M3/D
MUT [Difference]				-50.24	-98.25	-9.23	-25.46	-34.72	M3/D
MUT [% Error]				-0.55	-1.07	-0.10	-0.28	-0.38	%
mA OUTPUT				7.118	9.780	12.956	16.578	19.353	mA
MUT [Reading]	min.	4.000	mA	6.994	9.625	12.884	16,520	19.285	mA
MUT [Difference]	max.	20.000	mA	-0.124	-0.155	-0.072	-0.058	-0.068	mA
MUT [% Error]				-0.62	-0.78	-0.36	-0.29	-0.34	%
TOTALIZER - REF. FL	OW RA	ΓE					· · · · · · · · · · · · · · · · · · ·	8834.924	M3/D
TOTALIZER [MUT]								10	M3
TEST TIME								98.02	SECONDS
CALC. TOTALIZER								10.023	M3
ERROR								-0.23	%

COMMENTS

QUALITY MANAGEME	ENT STANDARD	S INFO.	RES	ULTS	
[QMS] INFORMATION [REFERENCE] LEVEL		ID# Yes	TEST	AVG %FS	PASS FAIL
PROCESS METER STOP WATCH	DMM SW	Yes	DISPLAY mA OUTPUT TOTALIZER	-0.46 -0.48 -0.23	PASS PASS PASS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

Т

Multi-Wavelength Colorimeter

Verification Report

PASS

AS FOUND CERTIFICATION

CUSTOMER CONTACT	Municipality of Chatham-Kent Todd Daly Chief Operator, North East Dresden WPCP 699 Camden St. Dresden, ON N0P 1M0 c. 519-359-2815 e. toddd@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH DR3900 1711042 n/a Dresden STP n/a
VER. BY	Randy Nichol	TOLERANCE [mg/L] STANDARD RECOVERY [%]	0.05 90
Standards, references used to conduct the	ent Standards Information - nce equipment, and instrumentation nis test outlining the lot#, and expiry ur current QMS document.	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 5, 2019 Annual Mar-2020

CHLORINE [Cl₂] SECONDARY STANDARDS

STANDARD	BLANK [mg/L]			READING mg/L	PASS FAIL
STD 1	0.25	+/-	0.09	0.23	PASS
STD 2	0.94	+/-	0.10	0.95	PASS
STD 3	1.71	+/-	0.14	1.73	PASS

CHLORINE [CI2] PRIMARY STANDARDS

STANDARD VALUE [mg/L]	30
STANDARD ADDITIONS SIZE [mL]	0.200

BLANK SAMPLE SIZE [mL]	10.0

DPD LOT# EXPIRY DATE

A8134 May-23

SAMPLE	Cl ₂	COMBINED	REFERENCE	REFERENCE	MUT	DIFF.	PASS	STANDARD
TEST	STANDARD	SAMPLE	STANDARD	READING	READING	ERROR	FAIL	RECOVERY
#	mL	mL	mg/L	mg/L	mg/L	mg/L		%
BLANK	0	10.000	0	0	0	0	PASS	N/A
STD 1	0.200	10.200	0.59	0.56	0.56	0.00	PASS	94.9
STD 2	0.400	10.400	1.15	1.06	1.07	0.01	PASS	92.2
STD 3	0.600	10.600	1.70	1.52	1.53	0.01	PASS	89.4
				AVERAGE RESULTS		0.01	PASS	92.2

COMMENTS	[QMS] INFORM	[QMS] INFORMATION ITEM		
	[REFERENCE]	HACH PCII	HACH PC	CII 1
	10.0 mL PIPETT	ΓE	HACH-PP	
	0.2 mL PIPETTE	Ξ	G-PP-2	1
	SECONDARY S	SECONDARY STANDARDS PRIMARY STANDARDS		1
	PRIMARY STAN			1
	ABSORBANCE	STANDARDS	AS-ABS	1
	ABS	ORBANCE CHE	CKS	
	WAVELENGTH	TESTED	PASS/FAIL	
	420 nm	Yes	PASS	
	520 nm	Yes	PASS	
	560 nm	Yes	PASS	
	610 nm	Yes	PASS	

Primary and Secondary standards were used to confirm the overall accuracy of this instrument along with conducting an analytical comparative technique against a reference meter. All values are considered "AS FOUND" readings. If the "AS FOUND" readings were not within acceptable limits, an "AS LEFT" report will be issued if the instrument was able to be calibrated to indicate the overall accuracy of the meter. If the meter was not calibrated for any reason, a comment will be issued for this instrument.

"If we don't measure it, how do you manage it?"