PUBLIC UTILITIES COMMISSION FOR THE MUNICIPALITY OF CHATHAM-KENT

CHATHAM WATER POLLUTION CONTROL PLANT

2019 PERFORMANCE REPORT

January 1 to December 31, 2019

Environmental Compliance Approval # 6551-8WXKHC

Plant Description

The Chatham Water Pollution Control Plant provides treatment for wastewater for the community of Chatham. Wastewater is collected by 24 sewage pump stations and conveyed by a largely separated sanitary sewer system. Some combined sewers remain. Final effluent is discharged to the Thames River.

The Chatham Water Pollution Control Plant was first constructed in 1964 and underwent expansions in 1992 and 2004. The development of the facility has followed the growth of the municipality and the advancement in technology and regulations. The combined Plant 1 and Plant 2 facility has a rated capacity of 36,000m³/day, with a peak flow of 72,000m³/day.

The treatment system includes the following processes:

- Raw sewage pumping
- Screening collection and removal
- Aerated grit removal using a grit chamber, grit slurry and cyclone
- Chemical phosphorus removal
- Primary treatment, primary sludge collection and pumping
- Biological treatment using the Conventional Activated Sludge process
- Final settling
- Disinfection using Chlorine Gas and Sulphur Dioxide
- Two-stage anaerobic digestion, sludge pumping and digested gas handling
- Sludge Dewatering

In addition, recovered methane gas produced from the anaerobic digesters is used to power digester gas/natural gas fired boilers and the heat is consumed within the plant to offset energy costs.

As well, recovered methane gas produced by the anaerobic digesters powers a methane fired Generator which feeds power back to the hydro grid to generate revenue.

REPORTING REQUIREMENTS UNDER ENVIRONMENTAL COMPLIANCE APPROVAL #6551-8WXKHC

Summary and Interpretation of Monitoring and Comparison to the Effluent Limits: Condition 10 (6) (a)

Tables 1 & 2 outline the monthly average results of parameters tested compared to the limits outlined in the Environmental Compliance Approval, Table 2 Effluent Limits.

Success and Adequacy of the Works

During the reporting period, the annual average daily flow was 22,162 m³/day, which represents approximately 62% of the rated capacity of 36,000 m³/day. The maximum daily flow was 64,100 m³/day, which is 89% of the Peak Flow Rate of 72,000 m³/day.

Table 1: Summary of Monitoring Data and Comparison to Effluent Limits & Objectives – Concentrations

as well as rated capacity to the sewage works

Plant rated capacity of 36,000m³/day Total sewage flow to the works during a calendar year divided by the number of days during which sewage was flowing to the works that year

Month	Total Monthly Flow m ³	Avg Daily Flow /Month m ³ /day	Avg Daily Flow/ Year m³/day	% of Plant Capacity	CBOD₅ mg/L	Total S.S. mg/L	Total Ammonia mg/L	Total P mg/L	рН	E.Coli / 100mL CFU Geomean	Total Chlorine Residual mg/L
Limits: Dec 15 – Apr 15	None	None	36,000	100	15	15	4.0	0.75	6.0 - 9.5	200	0.01
Limits: Apr 16 – Dec 14	None	None	36,000	100	15	15	3.0	0.75	6.0 - 9.5	200	0.01
Objectives: Dec 15 – Apr 15	None	None	36,000	100	10	10	3.0	0.60	6.0 - 9.5	150	
Objectives: Apr 16 – Dec 14	None	None	36,000	100	10	10	2.0	0.60	6.0 - 9.5	150	
Jan	654,320	21,107			2.0	3.6	0.54	0.36	7.75	34.59	0.00
Feb	884,530	31,590			2.0	6.8	0.08	0.21	7.64	22.13	0.01
Mar	796,340	25,688			2.0	4.3	0.10	0.29	7.60	37.22	0.00
Apr	1,038,620	34,621			2.0	4.0	0.40	0.26	7.84	27.02	0.00
Мау	1,002,110	32,326			2.0	4.0	0.31	0.34	8.02	22.13	0.00
Jun	665,890	22,196			2.0	5.5	0.12	0.57	7.67	26.32	0.00
Jul	545,120	17,585			2.0	6.0	0.19	0.38	7.78	63.42	0.00
Aug	472,770	15,251			2.0	4.5	0.17	0.24	7.93	82.71	0.00
Sept	532,680	17,756			2.2	5.0	0.33	0.25	7.92	80.00	0.01
Oct	532,110	17,165			2.8	4.3	1.99	0.10	7.86	24.49	0.00
Nov	474,610	15,820			2.3	5.3	0.11	0.12	7.93	50.91	0.00
Dec	490,110	15,810			2.4	9.0	0.09	0.23	7.77	97.79	0.01
YEAR			22,162	62%							
	Yearly Total Flow m ³					Yearly	Maximums				
	8,089,210	34,621			2.8	9.0	1.99	0.57	8.02	97.79	0.01

Table 2: Summary of Monitoring Data and Comparison to Effluent Limits – Loadings

Year	Avg Daily Effluent Flow /Year m³/day	CBOD5 Kg/day	Total S.S. Kg/day	Total P Kg/day
Limits: Receiver	None	540	540	27
		Annual A	verage	
2019	22,162	47.3	114.7	6.2

Operating Problems and Corrective Action: Condition 10 (6) (b)

There were no significant operating problems encountered during this reporting period.

Summary of Maintenance Activities: Condition 10 (6) (c)

Routine maintenance was performed throughout the reporting period. Chatham-Kent PUC utilises an electronic preventative maintenance program to track preventative maintenance. In addition to the routine maintenance, the following additional maintenance activities and equipment replacement was completed for the reporting period:

•	Main Lift Pump #3 Rebuild	\$ 29,500
•	Replacement Chains & Flights for Plant #2	28,000
•	47' 1/2" Checkmate Valve Pump Station 5 Storm Outfall	27,000
•	Lagoon Pump #1 Repair	19,800
•	Plant & Pump Station Electrical Upgrades	17,400
•	Piping Remediation (Main Lift)	16,900
•	Divers for Tidemate Install (Pump Station #5)	16,300
•	Automatic Composite Samplers (2)	15,400
•	New Check Valve (Pump Station #3)	12,400
•	New Transfer Pump Digester #3	11,700
•	New Pipes (Gas Room Basement)	10,700
•	Press Belts and Rollers	10,500
•	New Flow Meters (4)	9,900
•	Gas Room Maintenance & Inspection	9,300

•	Replacement Press Conveyer Liners	8,500
•	New Impeller for Main Lift Pump #4	7,400
•	150 HP Blower Motor Repair	7,200
•	Runners for Final Chamber (Plant 2)	7,200
•	SCADA Remediation & New SCADA Computer	7,000
•	Sewer Plugs for Pipe Repairs (Grand Ave)	6,400
•	Portable Sampler	6,350
•	New In-ground Pipes	6,200
•	Gas RM Plug Valves	5,700
•	New Main Lift Pump #3 Impeller	5,500
•	Seal Kits for Vogelsang Pumps	5,350
•	Plant Blower Laser Alignment	4,100
•	Annual Flow, Pressure & Level Meter Calibrations	4,000
•	Press Replacement Equipment	3,900
•	Pump Station #3 Variable Frequency Drive (VFD) Repair	3,900
•	Pump Station #2 V.F.D. Repair	3,700
•	Aeration Valves (3)	3,600
•	Pump Station 3, Pump #3 VFD Repair	3,300
•	Rear Substation Reparation	3,300
•	Flight Chain Linkage and Blocks (Plant #1)	3,300
•	New Press V.F.D.	3,200
•	Main Lift Pump #4 Rebuild	3,000
•	Flight Chain Linkage and Blocks (Plant #2)	2,600
•	Boiler Inspection & Service	2,500
•	Backflow Inspection	2,400
•	Gas Room Electrical Upgrades	2,400
•	Seal Kit for Netzsch Pump	2,300
•	Vogelsang Wear Plates (6)	2,300
•	Tubing for Heat Exchanger #1	2,000
•	New VFD for Pump Station #22	1,800

Quality Assurance and Control Measures: Condition 10 (6) (d)

The Chatham-Kent Public Utilities Commission followed a sampling schedule developed in accordance with the Environmental Compliance Approval and applicable regulations for this reporting period.

Composite chemistry samples of the raw flow were collected using an auto sampler. Chemistry samples were submitted weekly to an accredited laboratory for analysis of CBOD₅, BOD₅, Total Suspended Solids, Total Kjeldhal Nitrogen, Total Phosphorus, Total Ammonia Nitrogen, Nitrite and Nitrate, Alkalinity and pH.

Composite chemistry samples of the effluent were collected using an auto sampler. Chemistry samples were submitted weekly to an accredited laboratory for analysis of CBOD₅, Total Suspended Solids, Total Kjeldhal Nitrogen, Total Phosphorus and Total Ammonia Nitrogen, Alkalinity, pH, Nitrite and Nitrate and Unionized Ammonia.

Bacteriological samples of the effluent were collected weekly according to the Sampling Program and submitted weekly to an accredited laboratory for analysis.

In house samples were analysed by a licensed operator for pH, temperature and D.O.

Calibration and Maintenance on Effluent Monitoring Equipment Condition 10 (6) (e)

All required probes and sensors are cleaned, maintained and/or calibrated on a monthly basis or as required by manufacturers' specifications.

Monitoring equipment calibration/verification report(s) included for the following:

- Effluent flow meter
- Spectrophotometer
- pH meter

Effluent Objectives Condition 10 (6) (f)

Table 1 outlines monthly average results of parameters tested compared to the objectives outlined in the Certificate of Approval Table 1 Effluent Objectives.

Sludge Management Condition 10 (6) (g)

The sludge generated at the facility is treated and air dried on site for 1 year, then land applied at the Ridge Landfill as top cover.

MONTH	DISPOSAL AREA	SLUDGE QUALITY	SLUDGE QUANTITY LAND APPLIED m ³
June	Ridge Landfill	Within Ministry Guidelines	559.26
July	Ridge Landfill	Within Ministry Guidelines	2,321.57
August	Ridge Landfill	Within Ministry Guidelines	2,954.97
Total			5,835.8

Outline of Anticipated Volumes in Next Reporting Period

The sludge production and sludge handling method for the coming reporting period is anticipated to be the similar to that of this reporting period.

Community Complaints: Condition 10 (6) (h)

There were no Customer Complaints received during the reporting period.

By-pass, Spill, or Abnormal Discharge Events: Condition 10 (6) (i)

A Pump Station Bypass event of 4,234 m3 occurred on May 02 for 14 hours immediately downstream from Pump Station #10, 251 Park Ave West, Chatham. The Bypass event resulted from heavy rainfall over the previous two weeks.

Other Information the District Manager Requires: Condition 10 (6) (j)

No other information was required from the District Manager during this reporting period.

APPENDIX A

Yearly Operational Data Summary for the Reporting Period

2019	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	TOTAL	MAX	MIN	AVG
Raw Sewage																
Total Flow 10 ³ m ³	654.320	884.530	796.340	1038.620	1002.110	665.890	545.120	472.770	532.680	532.110	474.610	490.110	8089.210	1038.620	472.770	674.101
Avg. Daily Flow $10^3 m^3$	21.107	31.590	25.688	34.621	32.326	22.196	17.585	15.251	17.756	17.165	15.820	15.810		34.621	15.251	22.162
Max. Daily Flow 10 ³ m ³	49.460	60.680	43.240	64.100	60.740	31.320	30.790	21.960	32.970	40.200	26.130	23.180		64.100	21.960	40.398
Dirverted to Lagoons 10 ³ m ³	20.048	129.305	13.553	347.172	34.265	10.569	20.116	8.268	24.165	18.241	7.620	8.439		347.172	7.620	53.480
Lagoons Discharge 10 ³ m ³	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Final Effluent																
Avg. Daily Flow 10 ³ m ³	21.107	31.590	25.688	34.621	32.326	22.196	17.585	15.251	17.756	17.165	15.820	15.810	266.915	34.621	15.251	22.162
Raw Sludge																
Total Volume In m ³	4475	3021	5300	3372	5710	5562	4452	3570	6109	5357	7106	6852	60885	7106	3021	5074
	3.7	4.5	3.7	3.9	4.1	3.5	3.3	0.0	2.9	2.6	3.0	3.3		4.5	0.0	3.2
Avg. V.S. %	63.5	61.0	62.9	59.5	53.2	53.2	52.9	0.0	65.0	56.5	53.4	51.4		64.98	0	52.7
# 1 Primary Digestion																
no	2829	2333	4004	2971	4049	4066	3550	3221	3904	3909	5110	4429	44375	5110	2333	3698
Avg. T.S. %	3.1	3.5	2.3	2.8	10.5	3.0	2.7	2.4	2.6	2.6	2.6	2.9		10.5	2.3	3.4
Avg. V.S. %	51.1	48.6	51.1	50.2	43.9	45.9	49.4	46.5	54.7	49.7	49.5	50.2		54.7	43.9	49.2
# 3 Primary Digestion																
Total Volume Out m ³	3331	2665	4534	3220	4942	4510	3983	3540	4413	4160	5127	4718	49143	5127	2665	4095
	1.9	2.1	2.2	2.2	3.0	2.8	2.4	2.2	1.9	2.2	2.4	2.3		3.0	1.9	2.3
Avg. V.S. %	50.1	49.6	50.1	50.3	44.3	46.1	48.9	49.1	54.2	49.2	50.1	53.4		54.2	44.3	49.6
Belt Press																
Total Hours Operated	212.8	194.0	217.1	164.6	196.8	239.4	186.3	217.2	213.2	187.8	132.4	233.0	2394.5	239.4	132.4	199.5
Total Sludge Dewatered m ³	6628	6032	6530	5497	7268	8720	6761	7231	7473	5377	4502	7475	79495	8720	4502	6625
T.S. Sludge %	3.5	3.6	3.4	3.5	3.6	3.1	3.1	3.1	3.1	3.1	2.7	3.1		3.6	2.7	3.2
Polymer # 757 lbs/month	753	615	865	680	820	912	627	808	857	468	589	934	8927	934	468	744
Cake Total Solids %	15.3	17.9	17.9	17.4	19.1	16.5	17.5	18.5	17.5	17.3	16.4	16.8	208.1	19.1	15.3	17.3
Phosphorous Removal Chemicals	hemicals															
Iron Dosage mg/L	5.05	3.49	3.07	3.11	3.03	5.80	7.49	7.20	3.70	5.42	5.15	4.89	57.4	7.5	3.0	4.8
Ferrous Chloride kg/D	75.21	75.70	58.57	70.47	68.03	93.62	108.96	108.97	45.61	69.19	62.10	56.87	893	109	46	74

-

2019	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	TOTAL	MAX	NIM	AVG
Disinfection																
Chlorine Used kg/D	1409.5	1599.0	1771.5	1891.5	1653.5	1489.0	1090.5	1128.5	1333.0	1277.0	1343.0	1119.0	17105.04	1891.5	1090.5	1425.42
Chlorine Dosage mg/L	2.23	1.90	2.30	2.05	1.75	2.29	2.09	2.43	2.63	2.53	2.87	2.31		2.87	1.75	2.28
SO_2 Used kg/D	1271.5	1265.0	1409.5	1255.0	1357.5	1264.0	985.5	903.0	1306.0	1082.0	986.5	1117.0	14202.5	1409.5	903	1184
SO ₂ Dosage mg/L	2.07	1.58	1.82	1.38	1.48	1.96	1.91	1.94	2.56	2.20	2.13	2.32		2.56	1.38	1.95
Final Residual mg/L	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	00.0	0.01		0.01	0.00	0.01
E.Coli Average /100mL	34.59	22.13	37.22	27.02	22.13	26.32	63.42	82.71	80.00	24.49	50.91	97.79		97.79	22.13	47.40
Raw Sewage Average																
рН	7.53	7.65	7.52	7.75	7.86	7.59	7.63	7.66	7.66	7.23	7.61	7.59		7.86	7.225	7.61
Ammonia as N, mg/L	21	15	19	19	16	20	25	35	27	26	26	28		35.3	15.3	23.0
Nitrogen, T. Kjeldahl as N, mg/L	26	19	25	23	20	26	32	39	33	32	33	32		39	18.5	28.3
Phosphorous, Total as P, mg/L	3.3	2.6	4.1	4.6	5.8	9.2	8.0	9.1	5.9	5.2	8.6	8.3		9.2	2.6	6.2
Solids, Suspended mg/L	226	183	193	235	315	425	320	393	306	365	570	470		570	183	333
Alkalinity CaCO _{3,} mg/L	326	290	295	334	298	293	308	343	284	268	248	308		343	247.5	299
BOD _{5,} mg/L	138	115	117	102	127	150	149	150	182	280	178	160		280	102	154
Final Effluent Average																
рН	7.75	7.64	7.60	7.84	8.02	7.67	7.78	7.93	7.92	7.86	7.93	7.77		8.02	7.60	7.81
Ammonia as N, mg/L	0.54	0.08	0.10	0.40	0.31	0.12	0.19	0.17	0.33	1.99	0.11	0.09		1.99	0.08	0.37
NH ₃ Un-Ionized - Federal	0.0031	0.0006	0.0006	0.0032	0.0021	0.0008	0.0014	0.0024	0.0034	0.0200	0.0010	0.0022		0.0200	0.0006	0.0034
Nitrogen, T. Kjeldahl as N, mg/L	1.2	0.8	1.0	1.0	1.0	0.7	1.2	0.7	1.3	2.5	1.2	1.0		2.46	0.67	1.12
Nitrate as N, mg/L	13.17	12.20	11.88	11.55	9.33	17.28	18.91	13.33	20.58	6.20	17.53	21.54		21.54	6.20	14.46
Nitrite as N, mg/L	0.031	0.013	0.021	0.038	0.035	0.011	0.028	0.011	0.027	0.094	0.019	0.012		0.094	0.011	0.03
Phosphorous, Total as P, mg/L	0.36	0.21	0.29	0.26	0.34	0.57	0.38	0.24	0.25	0.10	0.12	0.23		0.57	0.10	0.28
Solids, Suspended mg/L	3.6	6.8	4.3	4.0	4.0	5.5	6.0	4.5	5.0	4.3	5.3	9.0		9.0	3.6	5.2
Alkalinity CaCO _{3,} mg/L	194	173	193	196	220	135	134	175	132	170	180	164		220	132	172
CBOD _{5,} mg/L	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.2	2.8	2.3	2.4		2.8	2.0	2.1
D.O. Avg. mg/L	7.7	8.4	8.2	8.6	8.5	7.6	6.7	6.0	6.0	6.3	6.9	7.4		8.6	6.0	7.4
Temperature C	11.47	9.59	10.61	12.29	14.93	18.97	21.97	23.10	23.68	20.75	17.23	14.59		23.68	9.59	16.60
Leachate, Septage & Grit																
Septage Received m ³ /Day	131.7	254.9	213.5	429.9	679.6	357.1	527.4	383.8	287.0	318.2	235.7	203.7	4022.48	679.58	131.73	335.2
Leachate monthly total $1000m^3$	3207.2	3183.0	3237.3	3251.7	4224.9	2304.1	2642.8	1640.3	2113.0	3989.6	3936.0	3448.0	37177.8	4224.9	1640.27	3098.2
Total Grit Removed m ³	12	12	12	12	15	12	12	15	12	12	0	12	138	15	0	12

2

APPENDIX B

Calibration Reports for the Reporting Period

AS FOUND CERTIFICATION

					PASS
CLIENT DETA	AIL			Ε	QUIPMENT DETAIL
CUSTOMER	Chatham-Kent - Chat	ham STP		[MUT] MANUFACTURER	Milltronics
CONTACT	Tim Dickinson			MODEL	MultiRanger 200
	Chief Operator 519-359-3811			CONVERTER SERIAL NUMBER	PBD/B8231599
				PLANT ID Chatham P METER ID	ollution Control Plant
					Final Effluent
				FIT ID	FIT-671
				CLIENT TAG	FIT-671
	Paris Machuk / Brend	en Indiale		OTHER	N/A
				GPS COORDINATES N42 23	.304 W082 12.872
Quality Mana Reference e	agement Standards In quipment and instrum	formation -	to	VERIFICATION DATE	March 05, 2019
conduct this	verification test is four	nd in our AC-	10	CAL. FREQUENCY	Annual
	ent at the time this tes			CAL. DUE DATE	March, 2020
				CAL DOL DATE	Waron, 2020
PROGRAMMI	NG PARAMETERS				TOTALIZER
THROAT WID	TH, (exp 1.5)	m	3.030	AS FOUND	84938.71 M3
EMPTY DISTA	NCE, TX to notch	m	0.785	AS LEFT	85446.11 M3
TRANSDUCE	R (TX), to sump flc	m	N/A	DIFFERENCE	507.4 M3
SUMP LEVEL	, zero flow	m	n/a		TEST CRITERIA
				AS FOUND CERTIFICATION TEST	Yes
MAX. HEAD		m	0.509	ALLOWABLE [%] ERROR	5
BLANKING DI	STANCE	m	0.305		
DEAD ZONE		m	-0.029	CON	PONENTS TESTED
MAX. FLOW		LPS	2022.4	CONVERTER DISPLAY	Yes
F.S. RANGE -	O/P	LPS	2022.4	mA OUTPUT	Yes
				TOTALIZER	Yes
				ACCURACY BASED ON [% o.r.]	No
Lilitroconia Con	oor is not installed high	anavah ta ana	une full exerts flows and there		

Ultrasonic Sensor is not installed high enough, to ensure full scale flow conditions

conditions		ERROR DOCUM	ENTED IN THIS REF	PORT; BASED ON % F.S.
	ACC	URACY BASED	ON [% o.r.]	No
	101	ALIZER		Yes

AS FOUND TEST RES		16.0	24.6	34.4	45.2	62.0	% F.S. Range
		0,150	0.200	0.250	0.300	0,370	m
REF. FLOW RATE		323.54	498.12	696.14	915.10	1253.40	LPS
MUT [Reading]		346.04	524.85	726.34	956.42	1284.40	LPS
MUT [Difference]		22.50	26.73	30.20	41.32	31.00	LPS
MUT [% Error]		1.1	1.3	1.5	2.0	1.5	%
mA OUTPUT		6.560	7.941	9.507	11.240	13.916	mA
MUT [Reading]	min. 4.000 mA	6.738	8.151	9.745	11.568	14.160	mA
MUT [Difference]	max. 20.000 mA	0.178	0.210	0.238	0.328	0.244	mA
MUT [% Error]		0.89	1.05	1.19	1.64	1.22	%
TOTALIZER - REF. FI	.OW RATE		<i>b.</i>			1253.403	LPS
TOTALIZER [MUT]						139.75	M3
TEST TIME						107.54	SECONDS
CALC. TOTALIZER						134.791	M3
ERROR						3.55	%

C	ON	AR.	٨F	N1	rs.

QUALITY MANAGEME	NT STANDARD	S INFO.	RES	ULTS	
[QMS] INFORMATION	IDENT.	ID #	TEST	AVG	PASS
[REFERENCE] LEVEL	Sim. BOARD	Yes	1631	%FS	FAIL
PROCESS METER	PM	11	DISPLAY	1.60	PASS
STOP WATCH	SW	Yes	mA OUTPUT	1.20	PASS
			TOTALIZER	3.55	PASS

This report reflects the test results of the overall accuracy for the above flow converter using the specified manufacturers flow tube simulator to within the specified tolerance as identified within this report.

Multi-Wavelength Colorimeter

Verification Report

AS FOUND CERTIFICATION

CUSTOMER CONTACT	Municipality of Chatham-Kent Tim Dickinson Chief Operator, Chatham STP 325 Grand Ave Chatham Ontario T: 519-359-3811 E. timdi@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH DR3900 1613114 Chatham STP Chatham STP n/a
VER. BY	Randy Nichol	TOLERANCE [mg/L] STANDARD RECOVERY [%]	0.05 90
Standards, referen used to conduct thi	nt Standards Information - ce equipment, and instrumentation is test outlining the lot#, and expiry r current QMS document.	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 12, 2019 Annual March , 2020

CHLORINE [CI₂] SECONDARY STANDARDS

STANDARD		BLANK [mg/L]		READING mg/L	PASS FAIL
STD 1	0.25	+/-	0.09	0.23	PASS
STD 2	0.94	+/-	0.10	0.92	PASS
STD 3	1.71	+/-	0.14	1.71	PASS

CHLORINE [CI₂] PRIMARY STANDARDS

STANDARD VALUE [mg/L] STANDARD ADDITIONS SIZE [mL]	27.3 0.200		BLANK SAMPL	E SIZE [mL]	10.0
	0.200		DPD LOT# EXPIRY DATE		A8134 May-23

SAMPLE	Cl ₂	COMBINED	REFERENCE	REFERENCE	MUT	DIFF.	PASS	STANDARD	Ĺ
TEST	STANDARD	SAMPLE	STANDARD	READING	READING	ERROR	FAIL	RECOVERY	Ĺ
#	mL	mL	mg/L	mg/L	mg/L	mg/L		%	Ĺ
BLANK	0	10.000	0	0	0	0	PASS	N/A	Ĺ
STD 1	0.200	10.200	0.54	0.53	0.53	0.00	PASS	98.1	Ĺ
STD 2	0.400	10.400	1.05	1.01	1.01	0.00	PASS	96.2	Ĺ
STD 3	0.600	10.600	1.55	1.46	1.46	0.00	PASS	94.2	
				AVERAGE	RESULTS	0.00	PASS	96.2	ĺ
									1

COMMENTS	[QMS] INFORM	ATION	ITEM	ļ	ID #
	[REFERENCE] I	HACH PCII	HACH F	PC II	1
	10.0 mL PIPETT	ΓE	HACH-F	P-10	1
	0.2 mL PIPETTE	Ξ	G-PP-2		1
	SECONDARY S	TANDARDS	AS-CLS	S	1
	PRIMARY STAN	NDARDS	AS-CLP	S	1
	ABSORBANCE	STANDARDS	AS-ABS	;	1
	ABS	ORBANCE CHE	CKS		
	WAVELENGTH	TESTED	PASS/FAIL		
	420 nm	Yes	PASS		

520 nm

560 nm

610 nm

Yes

Yes

Yes

PASS PASS

PASS

Primary and Secondary standards were used to confirm the overall accuracy of this instrument along with conducting an analytical comparative technique against a reference meter. All values are considered "AS FOUND" readings. If the "AS FOUND" readings were not within acceptable limits, an "AS LEFT" report will be issued if the instrument was able to be calibrated to indicate the overall accuracy of the meter. If the meter was not calibrated for any reason, a comment will be issued for this instrument.

AS FOUND CERTIFICATION

CUSTOMER CONTACT	Municipality of Chatham-Kent Tim Dickinson Chief Operator, Chatham STP 325 Grand Ave Chatham Ontario T: 519-359-3811 E. timdi@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH Pocket Colorimeter II 08070E105502 n/a Chatham STP n/a
VER. BY	Randy Nichol	TOLERANCE [mg/L] STANDARD RECOVERY [%]	0.05 90
Standards, referen used to conduct thi	nt Standards Information - ce equipment, and instrumentation is test outlining the lot#, and expiry r current QMS document.	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 12, 2019 Annual March, 2020

CHLORINE [Cl₂] SECONDARY STANDARDS

FLOWMETRIX

STANDARD		NIST STD [mg/L]	READING mg/L	PASS FAIL
STD 1	0.26	+/-	0.09	0.22	PASS
STD 2	0.92	+/-	0.10	0.91	PASS
STD 3	1.68	+/-	0.14	1.68	PASS

CHLORINE [CI₂] PRIMARY STANDARDS

• · · · · · · · · · · · · · · · · · · ·		27.3 mL1 0.200				BLANK SAMPL	E SIZE [mL]	10.0		
STANDARD ADDITIONS SIZE [IIIL]						DPD LOT# EXPIRY DATE		A8134 May-23		
	SAMPLE	Cl ₂	COMBINED	REFERENCE	REFERENCE	MUT	DIFF.	PASS	STANDARD	1
	TEST	STANDARD	SAMPLE	STANDARD	READING	READING	ERROR	FAIL	RECOVERY	
	#	mL	mL	mg/L	mg/L	mg/L	mg/L		%	

0.1	0/ ==	0.1.1.2.1.1.2					
mL	mL	mg/L	mg/L	mg/L	mg/L		%
0	10.000	0	0	0	0	PASS	N/A
0.200	10.200	0.54	0.53	0.54	0.01	PASS	98.1
0.400	10.400	1.05	1.01	1.02	0.01	PASS	96.2
0.600	10.600	1.55	1.46	1.46	0.00	PASS	94.2
			AVERAGE	RESULTS	0.01	PASS	96.2
	mL 0 0.200 0.400	mL mL 0 10.000 0.200 10.200 0.400 10.400	mL mL mg/L 0 10.000 0 0.200 10.200 0.54 0.400 10.400 1.05	mL mL mg/L mg/L 0 10.000 0 0 0.200 10.200 0.54 0.53 0.400 10.400 1.05 1.01 0.600 10.600 1.55 1.46	mL mL mg/L mg/L mg/L 0 10.000 0 0 0 0.200 10.200 0.54 0.53 0.54 0.400 10.400 1.05 1.01 1.02	mL mL mg/L mg/L mg/L mg/L 0 10.000 0 0 0 0 0.200 10.200 0.54 0.53 0.54 0.01 0.400 10.400 1.05 1.01 1.02 0.01 0.600 10.600 1.55 1.46 1.46 0.00	mL mL mg/L mg/L mg/L mg/L 0 10.000 0 0 0 0 PASS 0.200 10.200 0.54 0.53 0.54 0.01 PASS 0.400 10.400 1.05 1.01 1.02 0.01 PASS 0.600 10.600 1.55 1.46 1.46 0.00 PASS

COMMENTS

[QMS] INFORMATION	ITEM	ID #
[REFERENCE] HACH PCII	HACH PC II	1
10.0 mL PIPETTE	HACH-PP-10	1
0.2 mL PIPETTE	G-PP-2	1
SECONDARY STANDARDS	AS-CLSS	1
PRIMARY STANDARDS	AS-CLPS	1

Primary and Secondary standards were used to confirm the overall accuracy of this instrument along with conducting an analytical comparative technique against a reference meter. All values are considered "AS FOUND" readings. If the "AS FOUND" readings were not within acceptable limits, an "AS LEFT" report will be issued if the instrument was able to be calibrated to indicate the overall accuracy of the meter. If the meter was not calibrated for any reason, a comment will be issued for this instrument.

	FLOWMETRIX	[MUT] AS FOUND	PASS
		[MUT] AS LEFT	PASS
CUSTOMER CONTACT	Municipality of Chatham-Kent Tim Dickinson Chief Operator, Chatham STP 325 Grand Ave Chatham Ontario T: 519-359-3811 E. timdi@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	HACH Sension +ph 608073 n/a Chatham STP
VER. BY	Randy Nichol	TOLERANCE [pH]	0.05
Standards, references used to conduct	nent Standards Information - ence equipment, and instrumentation this test outlining the lot#, and expiry our current QMS document.	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 5, 2019 Annual Mar-2020

pH VERIFICATION NIST TRACEABLE (BUFFERS)

BEFORE CALIBRATION

RE	FERENCE BU	FFER		[MUT] R	EADINGS	
pН	TEMP.	pН	pН	TEMP.	pH - ERROR	PASS
BUFFER	°C	CORRECTED	-	°C	DIFF.	FAIL
4.01	15.8	4.00	4.02	15.6	0.02	PASS
7.01	15.8	7.04	7.02	15.7	-0.02	PASS
10.01	15.8	10.10	10.09	15.8	-0.01	PASS
					RESULT	PASS

AFTER CALIBRATION

COMMENTS

REFERENCE BUFFER		[MUT] READINGS				
pH	TEMP.	pН	pН	TEMP.	pH - ERROR	PASS
BUFFER	°C	CORRECTED		°C	DIFF.	FAIL
4.01	15.8	4.00	4.02	15.6	0.02	PASS
7.01	15.8	7.04	7.02	15.7	-0.02	PASS
10.01	15.8	10.10	10.09	15.8	-0.01	PASS
					RESULT	PASS

	mv offse Slope	et/Assymetry	n/a n/a
/ENTS	[QMS] INFORMATION	ITEM	<u>ID #</u>
no calibration needed	[REFERENCE] 4.01 BUFFER	pHBUFF4	1

7.01 BUFFER

10.01 BUFFER

TEMPERATURE REF.

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.

pHBUFF7

DDTEMP

. pHBUFF10

1

1

1

CUSTOMER CONTACT	Municipality of Chatham-Kent Tim Dickinson Chief Operator, Chatham STP 325 Grand Ave Chatham Ontario T: 519-359-3811 E. timdi@chatham-kent.ca	[MUT] MANUFACTURER MODEL SERIAL NUMBER CLIENT TAG LOCATION OTHER	Aysix 3100 30S4949 Chatham STP Chatham STP n/a
VER. BY	Randy Nichol	TOLERANCE [pH]	0.05
Standards, reference used to conduct this	t Standards Information - e equipment, and instrumentation test outlining the lot#, and expiry current QMS document.	VERIFICATION DATE CAL. FREQUENCY CAL. DUE DATE	Mar 12, 2019 Annual Mar-2020

AS FOUND

DO Concentration [mg/L]	8.7
DO Concentration [%]	n/a
Barometric Pressure [hpa]	n/a
Temperature	19

AS LEFT

DO Concentration [mg/L]	9.3
DO Concentration [%]	n/a
Barometric Pressure [hpa]	n/a
Temperature	19.1

COMMENTS

[QMS] INFORMATION

ITEM

ID #

Comparision Match to HQ30D 080200018124

Performed calibration as per manufacturers suggested technique

NIST Traceable Buffers were used to confirm the overall accuracy of this instrument. "AS FOUND" readings and "AS FOUND" readings are reported within this report. A temperature device was used to measure and record the buffer temperature to correct for pH values due to the effects related to buffer temperature.